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Abstract. An infinite set of exact solutions of the sextic double-well potential is derived. 
These solutions that are obtained for special configurations of the well are shown to provide 
an excellent description of the entire negative energy spectrum for arbitrary geometry of 
the well. A universal feature of this class of deep double-well potentials is deduced. 

1. Introduction 

Double-well potentials are of interest in many branches of physics. Unfortunately, 
only a few selected problems of this class are exactly solvable. A well known solvable 
case due to Merzbacher (1970) is that of two parabolic wells. Others include the case 
of a rectangular double well and a combination of two S-function wells. Thus, the 
energy spectrum has to usually be found using numerical techniques or by approxima- 
tion methods. A number of very ingeneous approximation techniques now exist, such 
as the two-step procedure of Chen and Cheng (1984) and the rational function approach 
of Fernandez et a1 (1989). The quantity of great interest is the splitting between the 
two lowest-lying levels which controls the tunnelling rate from one well to the other. 
This splitting is known to be a very sensitive function of the parameters of the well. 
The WKB based calculation of Landau and Lifshitz (1977) suggests that it has an 
exponential character. The solvable cases confirm this and so do the variational 
calculations in specific instances. However, supersymmetry based calculations of 
Cooper et a1 (1987) indicate that this may not always be the case. 

In this work we examine the one-dimensional double-well potential V =  
-ax2 + bx6 (a, b > 0 and for convenience we set a = +mu2).  We shall show that this 
problem has an infinite set of exactly derivable solutions that are obtained for a specific 
set of values of a suitable coupling constant ratio (denoted by j3 in the sequel) but 
which are such as to determine the entire negative energy spectrum (whenever it exists) 
very accurately. A partial but exact set of positive energy solutions also materialise. 
A remarkable feature of these solutions is that they either have energy E = 0 or appear 
in pairs *E.  A general feature of all double-well potentials of the type V = -ax2+ bxZs, 
s = 2 ,3 ,4 .  . . , will also be deduced. 

The paper is divided into three main sections. In section 2 we present the exact set 
of solutions for specific sextic double-well geometries, i.e., for a tuned set of p values 
and assemble their main consequences. Section 3 extends the results to a well of 
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arbitrary geometry through a suitable interpolation scheme. Section 4 is reserved for 
concluding remarks and general observations. 

2. The exact solutions 

Using dimensionless variables the Schrodinger equation reads 

+ ” + ( E  +y2-p2y6)+ = 0. ( 1 )  

Here, y = ax,  a’ = h / m o ,  E = 2 E / h w ,  p2 = 2bh2 /m3w4 and primes denote derivatives 
with respect to y.  Setting + = e-py4’4v(y) we have the equation 

v ” - 2 p y 3 ~ ’ +  [ E  + ( 1  - 3 p ) y 2 ] v  = 0. ( 2 )  

One notices that under the transformations y + iy and E + - E ,  ( 2 )  remains invariant 
and the exponential factor e-py4’4 is unaffected. Thus, if + ( y )  is a solution of ( 1 )  with 
energy E then +(iy) is also a solution with energy - E .  The formal solutions of ( 1 )  thus 
appear in pairs i s  unless E = 0 in which case + ( y )  and +(iy) cannot be distinct since 
the problem is one dimensional. Hence, for E = 0, the power series for u ( y )  must be 
a series in powers of y4. Incidently, this feature of pairing is not unique to this particular 
potential. Any combination of power-law potentials of the type ,s = 0, 1,2 ,  . . . 
has this property. But the two members of the pair need not always belong to the 
physical Hilbert space. Consider the simplest example where the solutions formally 
appear in pairs, namely the oscillator potential. Here, the transformations y + iy and 
E -j - E  lead the wavefunction out of the physical Hilbert space due to the behaviour 
of the associated exponential factor. The minimum requirement for both members of 
a pair to be simultaneously physical is that the most dominant term in the potential 
should correspond to s odd. Even i f s  is odd all pairs cannot be physical. This follows 
due to the fact that the double-well energy spectrum is bounded from below but not 
from above. In the case in hand we shall find that whenever v is a polynomial the 
expected pairs do indeed appear and so do the zero energy solutions. Returning to 
( 2 )  and introducing a second-scale transformation y -j y (  l / 2 p ) 1 ’ 4 )  we now have the 
equation 

v”-y3v’+(A + k y 2 ) v = 0  (3) 
where A = E/&@ and p = l I ( 2 k - t . 3 ) .  This equation admits polynomial solutions for 
k = 0, 1 , 2 , .  . . . To see this, set 

v = 2 anyn (4) 

with either a, # 0, a, = 0, or a, = 0, a ,  # 0. Thus, n is either even or odd. We find the 
three-term recursion relation 

( n  + 3 ) ( n  +4)a,+,+ ( k  - n)a ,  = 0. ( 5 )  

a/ # 0 but a,+, = a1+4 = 0. ( 6 )  

The coefficients being successive, polynomial solutions of degree 1 are obtained if 

Together, these conditions imply k = 1. This is a necessary condition for v to be a 
polynomial. Hence, polynomial solutions require 

(7)  k = 0, 1,2 ,  . . . 
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i.e., 

(8) 1 1 1  p =3,3,7,. . . . 
The condition = a k + 2  = 0 is equivalent to the vanishing of a ( m  + 1) X ( m  + 1) 
tridiagonal determinant whose diagonal elements are A and whose other non-zero 
elements are given by 

qCli = 2 ( m  - i  - 1 )  aii+l = 2i(2i - 1) for k = 2 m , m = 0 , 1 , 2  , . . .  ( 9 a )  

and by 

aitli = 2 ( m  - i  - 1) aii+l - - 2i(2i + 1) for k = 2 m + 1 .  ( 9 b )  

Equation ( 9 a )  applies for k even and ( 9 b )  for k odd. To get some feeling for the 
results it is best to consider some explicit examples. 

(i) k = 0, p = f .  We have h = 0, U =constant. Hence, the ground state is at E = 0. 
For p z-f there are no negative levels. 

(ii) k = 1, p = f . Again A = 0, U - y .  The one node solution has E = 0. Thus, for 
f > p k f there is one and only one negative energy level with even parity. 

(iii) k = 2 , p = f .  We have A 2 = 2 + & * = r i r 4  with vi-(1Ty2). E -  is the ground 
state energy and E +  that of the two-node level. There is clearly a second negative-energy 
level with one node since the one-node level which was at E = 0 for /3 = f must move 
downwards. Hence, for fs  /3 <+ the well develo s one pair of negative energy levels. 

(iv) k = 3 ,  p = $ .  We have A 2 = 1 2 3 e i = * J  with u * - ( y ' F f y 3 ) .  The function v 
has one node while U+ has three nodes. The only odd parity level of negative energy 
corresponds to a polynomial solution. Shortly, we shall see that there still is only one 
pair of negative levels. 

(v) k = 4 , / 3 = & .  A = O  or A2=32 .  For E = O ,  v - ( 1 - i y 4 ) .  This solution has two 
nodes. Hence, the two-node solution at p =& has positive energy. We still have just 
one pair of negative levels. The other two levels with h 2 = 3 2  have &*=*e and 
U* - ( 1  ~ 2 d ? y ~ + y ~ ) .  U- is the nodeless solution and U+ has four nodes. Again no 
negative energy level of even parity is a non-polynomial. 

(vi) k =  5 ,  /3 =&. A = O  or A2=64. The solution for E = O  is v - y ( l  - f y 4 ) .  It has 
three nodes. Thus, for p <A, there are three negative levels. A 2  = 6 4 3 s ,  = *@ 
with U+ - ( y  T $ y 3 +  ( i y ' ) .  U+ has five nodes and U- has one. No negative level of odd 
parity is a non-polynomial. 

This process can be continued indefinitely. However, the task becomes increasingly 
tedious. Fortunately, the structure of ( 9 a )  and ( 9 b )  offers a simple alternative. The 
desired values of A are just the eigenvalues of the corresponding matrices with diagonal 
elements zero. In this way we have worked out the solutions for up to k = 100. Going 
beyond this leads to no additional valuable information and consumes too much 
computer time. These results confirm the trends that have already been noticed and 
allow one to draw several general conclusions. Most importantly they lead to a very 
simple procedure for determining the energy spectrum for arbitrary p very accurately. 
Observe that the totality of the E = 0 solutions follow immediately by noting that the 
recursion relation ( 5 )  reduces to a two-step relation in this case so that one has simply 
the relation 

( n  + 3 ) (  n + 4 ) ~ , , + ~  + ( k  - n ) a ,  = 0. (10 )  
Hence, normalisable solutions for E = 0 are obtained for only k = 4m or k = 4m + 1 ,  
m = 0, 1 , 2 ,  . . . . The two sets of solutions have even and odd parity respectively. 
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The set of exact results can be summarised as follows. 
( a )  The number of negative levels is controlled entirely by the dimensionless 

( b )  There are no negative levels for p > i. 
( c )  There are no polynomial solutions for k < 0, i.e. p > $. 
( d )  For k = 2m, m = 0,1,2, . . . there are (m + 1 )  polynomial solutions of even 

parity. These are the set of lowest energy even parity solutions. They are a set of 
orthogonal functions with a weight factor of e-px4/4. 

( e )  Similarly for k = 2m + 1 ,  there are ( m  + 1) odd parity polynomial solutions 
which exhaust the lowest energy odd parity solutions. 

(f) New negative levels of even parity appear whenever k increases through 4m. 
Similarly, new negative levels of odd parity appear whenever k exceeds 4 m f l .  No 
additional negative levels are obtained for any other value of k. 

( g )  A level of even parity appears at E = 0 whenever k = 4m. It has 2m nodes. A 
level of odd parity appears at E = 0 for k = 4m + 1. It has 2m + 1 nodes. The appearance 
of a set of orthogonal polynomials for integral k has its origin in an underlying 
symmetry. For arbitrary p the Hamiltonian has no special symmetry but for p = 
1/ (2k+3) ,  k = 0 , 1 , 2 , .  . . it develops a close connection with an underlying SL(2, R )  
symmetry and the set of orthogonal polynomials correspond to various finite- 
dimensional representations of the SL(2, R )  group. This has been noted by Morozov 
et a1 (1989) for the even parity solutions. 

( h )  For any given integral value of k, the level separation between the levels of 
one parity decreases as we move up the spectrum to E = 0. Beyond E > 0 this trend is 
exactly reversed. However, up to the energies for which polynomial solutions are 
available the expected n3/* ( n  = single quantum number available for this problem), 
scaling is certainly not in evidence. For example, for k = 100, one finds that the lowest 
25 levels of positive energy do not reflect a WKB type scaling. 

( i )  The behaviour of any negative level with decreasing p, i.e. increasing k, has a 
universal character independent of its nodal classification. Designating a level of fixed 
number of nodes as & k  one finds that &k varies practically linearly as k for large enough 
k. The larger the number of nodes the larger is the value of k for which linearity sets 
in. In the linear regime each straight line has the same slope that very nearly equals 
the change in well depth per k. We shall see in the next section that this is a very 
valuable piece of information. First, let us explain its origin by examining the various 
energy scales that can contribute to the energies. The problem has two basic energy 
scales hw and ( bA6/ m3)'/4. Combining these two scales, a variety of other scales can 
be constructed, some singular and some non-singular. These scales can contribute to 
the energy, in principle. We can also construct an energy scale ( a 3 / b ) ' l 2  which is both 
classical and singular. It is readily seen that this scale alone determines the depth of 
the well. Naturally, therefore, such a scale can contribute directly to the energies, in 
spite of being singular. As p+O or k- ,co,  it can be verified that this energy scale 
dominates over any other constructible scale. Thus, the depth of the well and the most 
dominant contribution to energy are proportional to the same scale. This culminates 
into the linear behaviour of &k in k as k + Co. Now it will be easily recognised that this 
feature is in fact true of all double-well potentials of the type u=-ax.'+ bxZS. For 
b + 0, the classical scale dictates energy as well as the depth of the well. Thus, linearity 
is a feature common to all such deep double-wells. Indeed, we have checked this to 
be true of the double-well potential U = -ax2+ bx4 by using a fifth-order Runge-Kutta 
method. Such a feature is fully substantiated by variational calculations, 

coupling constant ratio p. 
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3. Negative energy spectrum for arbitrary f3 

We now address ourselves to the vital question, namely, how can one exploit the set 
of exact results for the specific or tuned values of p to determine the energy function 
for arbitrary p (at least for any p <i so that negative levels exist). First, we make two 
general observations. 

(1) We know E @ )  for a set of p values. This sequence of p values has a limit 
point. There is no reason to expect E @ )  to become discontinuous for any ,B # 0. Hence, 
in principle there should be no difficulty in extending E ( P )  away from the tuned set 
of p values. 

(2) The wavefunctions are known at the tuned set of p values. Hence, suitable 
variational trial functions near each such p values can be readily written down and a 
one- or two-parameter variational calculation should provide an excellent account of 
energy in the neighbourhood of the tuned set of /3 values. For small p one thus has 
a very useful approach in hand. 

However, in view of the discussion presented towards the end of section 2, a very 
simple interpolation scheme is already available. We have noted that for small p, E @ )  

varies as l/p, i.e. &k varies as k. In table 1 we present a selection of results for the 
ground and first-excited states for the range k = 0 to k = 50. Using this we can immedi- 
ately convince ourselves of the accuracy of the linear approximation. Consider, for 
example, the ground state and take a very extreme example. We find that ( E ] , , +  c5,,)/2 = 
-22.294 while from the same table ~ 3 0 =  -22.275. It is correct to about one part in one 
thousand. However, in practice, we need to invoke linearity only over the range A k  = 2 
and not over A k  = 40 as in the example above. This increases the accuracy substantially. 
For example, one finds 4 / 2  = -22.274 which is in excellent accord with ~ 3 0 .  

For larger values of k the accuracy of the linear approximation improves rapidly. The 
same is true for the one node level as well as the others. It is remarkable that even for 
low values of k the predictions of the linear approximation are substantially correct. 
In the worst case it predicts the ground state for k = 1 at ( E ~ +  +)/2 = -0.535 whereas 
numerically is at about -0.515. We thus find that the set of exact levels for tuned 
p does indeed determine the entire negative spectrum to an excellent approximation. 
To be precise, all levels lying below a small strip of width -hw below E = 0 are 
predicted to an excellent approximation by the linear interpolation scheme. 

Although the linear approximation over ranges of Ak = 2 fixes the absolute values 
of energy very satisfactorily and its accuracy increases rapidly as p + 0, it is not very 
effective in estimating the splittings between the ground and first excited states. The 
splitting decreases far too rapidly with increasing k for the linear approximation to 
keep pace with it. The lack of continuity of the derivative a s k / a k  admitted by the 
linear approximation seems to be the source of the trouble. 

The most logical, but at the same time perhaps too ambitious, way out of this 
difficulty is the following. Consider a large value of k, say k = 100. We know the lowest 
fifty levels of even parity exactly. Try to guess the function E ( n )  of the single quantum 
number n present in this problem that can reproduce these exact results. In addition 
we also know that for n +CO, the energy should scale as n3’2. However, we have not 
succeeded in this venture; E(n)  is certainly not an easily tractable function of n. 

The next option is to plot E k  for a fixed number of nodes as a function of k and 
try to guess the functional form of the curve that rapidly approaches a straight line 
for large k. One way is to use suitable Pad6 approximants. We have analysed the 
ground state case in detail and in fact by trial and error we have been able to find a 
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Table 1. Exact results for the ground state energy ( E ~ )  and the first excited state energy ( E , )  

k - EO k - E l  
~ 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

~~ 

0 
1.069 044 967 649 698 
2.412 090 756 622 109 
3.892 995 957 870 921 
5.405 41 1 593 010 458 
6.928 294 595 884 278 
8.456 356 653 030 063 
9.987 484 563 854 046 

11.52059538488444 
13.055 064 898 734 39 
14.590 506 453 699 66 
16.126 667 534 625 35 
17.663 376 180 603 11 
19.200 511 21445622 
20.737 984 774 895 38 
22.275 731 598 214 58 
23.813 702 189 474 92 
25.351 858 329 769 25 
26.890 170 037 197 89 
28.428 613 460 702 17 
29.967 169 388 855 72 
31.505 822 173 805 08 
33.044 558 941 473 11 
34.583 369 002 933 67 
36.122 243 409 601 88 
37.661 174 612 843 67 

1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 

0 
1.632 993 161 855 452 
3.137 858 162 210 945 
4.646 598 402 516 486 
6.165 943 251 805 180 
7.691 841 292 527 599 
9.221 619 414 070 378 

10.753 838 413 075 24 
12.287 688 485 080 67 
13.822682311 92402 
15.358 509 260 896 84 
16.894 961 928 541 28 
18.431 896 521 516 42 
19.969 210 193 187 68 
21.506 827 430 309 34 
23.044 691 534 653 30 
24.582 759 104 615 42 
26.120996 352 079 19 
27.659 376 579 631 43 
29.197 878 412 800 68 
30.736 484 536 154 19 
32.275 180 773 268 23 
33.813 955 406 133 73 
35.352 798 664 309 14 
36.891 702 336 391 36 
38.430 659 470 941 76 

very effective description of this curve. We use a three-parameter fit that estimates the 
energy to an accuracy sufficient for obtaining the splittings accurately. We employ the 
method of splines and parameterise the ground state as 

Ek=(Yk [ Bk?:yk] 

where (Y = 4/3& is the slope of the straight line representing the well depth as a 
function of k. The parameters Ak,  Bk and yk are determined as follows. Select an initial 
interval say, for example, from k = 20 to k = 24. Using the exactly known values eZO,  
and E 2 4  determine Ak,  Bk and y k  (assumed fixed over this interval). Determine aEk/ak 
at k = 20 and k = 24. Next, consider the interval k = 20 to k = 18. Using aEk/dk(k=20,  e2,, 
and & 1 8 ,  determine A, B, y for this interval and so on. Similarly, we can move upwards 
from k = 24. Let us now list some illustrative examples of this fit. For k = 7, we now 
predict the ground state to be at E = -4.64730. Numerically (fifth-order Runge-Kutta) 

= -4.6492. For k = 9 we now predict 
E = -6.16601 while eN = -6.16599 and E, .  = -6.16685. The improvement is significant 
enough to provide a good estimate of splitting recalling that the one-node levels for 
k = 7 and k = 9 are at E = -4.646598 and E = -6.165943 respectively. A similar fit 
applies to the one-node level. 

On the basis of our results we can confidently state that the splitting i s  a very 
sharply decreasing function of k. For a deep well it could quite possibly be an 

= -4.64727. The linear approximation gives 
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exponentially decreasing function of k. An exponential dependence is indeed very 
strongly suggested by a two-parameter variational calculation based on the trial func- 
tions 

e -e ( x - Y  )* * e -a ( X + Y  )Z TO,' - 
for the ground and first-excited states done on the assumption that the well is very 
deep, that is y is large. Incidently, such a calculation also confirms that as p + 0 the 
most dominant contribution to energy is controlled by the classical scale ( a3/  b)'" as 
remarked on in section 2. An additional qualitative reason can be cited to motivate 
the exponential character of splitting for p + 0. As noted above, for p + 0, the deep 
levels maintain an almost fixed distance from the bottom of the well. Effectively, such 
levels can be described by considering a Merzbacher-type double well with the separ- 
ation between its minima equalling (16/3p2)'14 and the effective o computed from the 
known energy gap between the ground state and the bottom of the well. But the splitting 
between the lowest levels of such a deep parabolic double well is well known to have 
an exponential character. Further more, the two arguments given above are clearly 
valid for all double wells of the type V = -ax2+  bxZS. 

4. Concluding remarks 

The principal feature of this work is the following. For integral k, one easily derives 
a partial set of manifestly normalisable solutions. The rest of the solutions for all k 
are, formally, power-series solutions that do not permit an easy implementation of the 
quantisation condition (the square integrability criterion) within our framework. 
However, the point is that the results for integral k that are in hand, already suffice 
to determine the negative energy spectrum and hence the splittings quite accurately, 
irrespective of the value taken by k. Besides the numerical illustrations quoted in 
section 3 we have also verified our energy predictions for a sample of non-integral k 
values to be in excellent accord with Runge-Kutta results. 

Our procedure provides a straightforward guide to suitable variational functions 
that can also be used to estimate energies. It is worth pointing out that an accurate 
knowledge of energy levels does not permit us to deduce the wavefunctions via the 
recursion relation. This is so because the Schrodinger equation admits normalisable 
solutions for exact energy eigenvalues only. These we do not possess in general. Hence, 
a very challenging independent study that would first ascertain energy as a function 
of k, presumably by exploiting the information available for integrally spaced k values, 
deserves attention. 

It is of some interest to note that the vibrational energy levels of the N atom in 
the ammonia molecule are well described by assuming a double-well potential of depth 
0.254 eV and the separation of minima of about 0.75 A. This well supports the three 
pairs of negative levels. The top-most of these levels lies very nearly at E = 0. For the 
sextic double well we find that such a configuration corresponds to k a  9 or p 9 &. 
The correct well depth requires the choice Rw ~0.635 eV. 

Next, we note that polynomial solutions arising out of a three-step relation have 
been noted in many contexts. A class of such problems for example, has been listed 
by Calogero (1979). Such solutions are obtained for some specific values of a suitable 
coupling constant ratio. That they are normalisable may not necessarily suffice in every 
such case to guarantee that they are physical. It is easy to construct divergent solutions 
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for combinations of potentials which for some specific choices of suitable coupling 
constant ratio can become polynomials and hence normalisable. Upon lifting the tuning 
condition such solutions continue along a divergent path in parameter space. Such a 
spurious set of solutions can in fact be constructed even in the present case. Thus, as 
a general rule, whenever polynomial solutions result due to the tuning of a parameter, 
one must ensure that they are physical. In the present example this is certainly true. 
The origin of these solutions as noted already lies in the sudden emergence of SL(2, R )  
symmetry of the associated Hamiltonian. Secondly, a numerical study based on a 
fifth-order Runge-Kutta method confirms these solutions and their smooth continuation 
away from the tuned values. Lastly, the energies predicted for arbitrary p on the basis 
of these solutions have already been seen to be satisfactory. 

Finally, we would like to remark that the sextic double-well potential in conjunction 
with a short range and weak binding potential can be used to provide an elegant 
illustration of quantum discontinuities pointed out originally by Calogero (1979). The 
details of this will be presented elsewhere. 
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